The Weizmann Institute of Science says that its new Quantum Twisting Microscope is a “clever take” on the science of twistronics and that it offers new ways of exploring quantum phenomena
The word twistronics comes from “twist” and “electronics” and refers to the study of how the angle (the twist) between layers of two-dimensional materials can change their electrical properties.
One of the striking aspects of the quantum world, explains the Weizmann Institute, is that a particle, say, an electron, is also a wave, meaning that it exists in many places at the same time. In a new study, reported today in Nature, researchers from the Weizmann Institute of Science make use of this property to develop a new type of tool – the quantum twisting microscope (QTM) – that can create novel quantum materials while simultaneously gazing into the most fundamental quantum nature of their electrons. The study’s findings may be used to create electronic materials with unprecedented functionalities.
Will you offer us a hand? Every gift, regardless of size, fuels our future.
Your critical contribution enables us to maintain our independence from shareholders or wealthy owners, allowing us to keep up reporting without bias. It means we can continue to make Jewish Business News available to everyone.
You can support us for as little as $1 via PayPal at [email protected].
Thank you.
The QTM involves the “twisting,” or rotating, of two atomically-thin layers of material with respect to one another. In recent years, such twisting has become a major source of discoveries. It began with the discovery that placing two layers of graphene, one-atom-thick crystalline sheets of carbon, one atop the other with a slight relative twist angle, leads to a “sandwich” with unexpected new properties. The twist angle turned out to be the most critical parameter for controlling the behavior of electrons: Changing it by merely one-tenth of a degree could transform the material from an exotic superconductor into an unconventional insulator. But critical as it is, this parameter is also the hardest to control in experiments. By and large, twisting two layers to a new angle requires building a new “sandwich” from scratch, a process that is very long and tedious.
“Our original motivation was to solve this problem by building a machine that could continuously twist any two materials with respect to one another, readily producing an infinite range of novel materials,” says team leader Prof. Shahal Ilani of Weizmann’s Condensed Matter Physics Department. “However, while building this machine, we discovered that it can also be turned into a very powerful microscope, capable of seeing quantum electronic waves in ways that were unimaginable before.”
The Weizmann team has already applied their microscope to studying the properties of several key quantum materials at room temperature and is now gearing up toward doing new experiments at temperatures of a few kelvins, where some of the most exciting quantum mechanical effects are known to take place.
Peering so deeply into the quantum world can help reveal fundamental truths about nature, said the researchers. In the future, it might also have a tremendous effect on emerging technologies. The QTM will provide researchers with access to an unprecedented spectrum of new quantum interfaces, as well as new “eyes” for discovering quantum phenomena within them.