Israeli scientists have made yet another breakthrough in the treatment of cancer. Researchers from Tel Aviv University (TAU) say they have found a way to treat ovarian cancer using RNA-based nanodrugs
While known as Startup Nation for its high-tech sector, Israel is also known for having some of the world’s top medical researchers. And Tel Aviv University alone keeps on making breakthroughs in cancer research. Already this month, TAU researchers revealed they found that 6 out of 10 children still develop cancer from secondhand cigarette smoke, even when the smoking is limited to outdoor areas such as a balcony.
Will you offer us a hand? Every gift, regardless of size, fuels our future.
Your critical contribution enables us to maintain our independence from shareholders or wealthy owners, allowing us to keep up reporting without bias. It means we can continue to make Jewish Business News available to everyone.
You can support us for as little as $1 via PayPal at [email protected].
Thank you.
And a team of researchers from Tel Aviv University and the Israel Institute for Biological Research recently developed an mRNA-based vaccine that they say is 100% effective against a type of bacteria that is lethal to humans.
Now, in a study conducted at Tel Aviv University the protein CKAP5 (cytoskeleton-associated protein) was used for the first time as a therapeutic target for RNA-based nanodrugs. After identifying a genetically unstable mutation resistant to both chemotherapy and immunotherapy in the tissues of ovarian cancer, the researchers targeted these cells with lipid nanoparticles containing RNA for silencing CKAP5 – causing the cells to collapse and achieving an 80% survival rate in animal models. The breakthrough was achieved by a TAU research team led by Prof. Dan Peer of the Shmunis School of Biomedicine and Cancer Research, a global pioneer in the development of RNA-based drugs, Head of the Laboratory of Precision Nanomedicine, and TAU’s VP for R&D; and by Dr. Sushmita Chatterjee, pos-tdoctoral student from India at Prof. Peer’s lab, in collaboration with Prof. David Sprinzak of the Wise Faculty of Life Sciences and Prof. Ronen Zaidel-Bar of the Sackler Faculty of Medicine. The study was funded by the Rivkin Foundation for Ovarian Cancer Research and the Shmunis Family Foundation. The results were published in the leading scientific journal Science Advances.
“The protein CKAP5 has never been studied with relation to the fight against cancer, simply because there was no known way to silence it,” explains Dr. Chatterjee. “The lipid nanoparticles developed by Prof. Peer enabled us for the first time to silence this protein through targeted delivery of an RNA drug. We proved that CKAP5, a protein responsible for the cell’s stability, can be silenced, and that this procedure collapses and destroys the entire cancer cell.”
At the second stage of the study the researchers tested the new CKAP5-silencing RNA drug on 20 types of cancer. Some cancer cells proved more sensitive than others to this procedure. Cancers displaying high genetic instability, which are usually highly resistant to chemotherapy, were found to be especially sensitive to the silencing of CKAP5.
“All cancer cells are genetically unstable,” says Dr. Chatterjee. “Otherwise, they would be healthy, not cancerous. However, there are different levels of genetic instability. We found that cancer cells that are more unstable, are also more affected by damage to CKAP5. Our drug pushed them to their limit, and essentially destroyed their structure. Our idea was to turn the trait of genetic instability into a threat for these cells, by using RNA to silence the flawed protein. We demonstrated for the first time that CKAP5 can be used to kill cancer cells, and then observed the biological mechanism that causes the cancer cells to collapse in the protein’s absence.”
Equipped with these insights, the researchers tested the new drug in an animal model for ovarian cancer, achieving a survival rate of 80%.