Connect with us

Hi, what are you looking for?

Jewish Business News

Bio-Tech

Israelis Win International Surgical Robot Competition

MOSHE-HADAS - TECHNION

 

Researchers from the Technion and Rambam Health Care Campus have won Best Innovation Prize in an international competition. Their project: a dedicated robot for minimally invasive neurosurgery.

Researchers from the Technion and Rambam Health Care Campus have won the Best Innovation Award in the Surgical Robotic Challenge 2016. Twelve teams from around the world participated in the competition in London.

Please help us out :
Will you offer us a hand? Every gift, regardless of size, fuels our future.
Your critical contribution enables us to maintain our independence from shareholders or wealthy owners, allowing us to keep up reporting without bias. It means we can continue to make Jewish Business News available to everyone.
You can support us for as little as $1 via PayPal at [email protected].
Thank you.

The Technion-Rambam team’s development is a robot for minimally invasive neurosurgery, intended for the removal of brain tumors of up to 6 cm in size. The robot is operated through a small keyhole in the skull using laser irradiation and tumor extraction. It does so using novel technologies of a needle assembly, real-time tumor detection and therapy of the cancerous tissue.

The robot was developed by Technion doctoral student Hadas Ziso, supervised by Professor Moshe Shoham, head of the Medical Robotics Laboratory and Professor Menashe Zaaroor, director of the Department of Neurosurgery at Rambam.

The robot is protected by a patent registered in the names of the three researchers and its first inventor, Assistant Professor David Zarrouk, who worked on the project in its early stages during his PhD at the Technion.

 

The needle assembly

The robotic device is composed of a needle assembly: a rigid outer needle and a self-reassembled inner needle. The outer needle is responsible for rotational movement and vertical movement into the tumor, while the inner needle is able to move laterally. Thus, in effect, three degrees of freedom are achieved.

“This project involved many challenges, ” says Ziso. “Besides the challenge of miniaturizing the detection and treatment tool, we had to allow the passage of a 90-degree curve in order to minimize the outer needle diameter. For this purpose we developed an inner needle that is flexible enough to pass through the curve, but also strong enough to lead the diagnostic and treatment tool to the tumor accurately, while bearing lateral loads resulted from heterogeneous environment. The inner needle mechanism that we developed is based on a chain of tiny magnetic beads, that are partially separated and self-reassembled while passing through a minimal curvature path, Kevlar fibers (a composite material) that pull the mechanism inward, stainless steel links that hold the optical fibers and suction tube, and a polyurethane cover.”

The robotic treatment includes several preliminary stages. First, prior to surgery, MRI scans are performed, and the physician prepares the treatment plan on the MR images. Second, a few hours before surgery, the patient drinks a fluorescent medium (5-ALA) that accumulates in the tumor during surgery, so that the robot will rely on both the preliminary MR scans and the morphology of the tumor in real time.

 

Focused laser beam

During surgery, ultraviolet (UV) light is projected at the tumor via optical fibers, causing the emission of red light from the fluorescent medium, accumulated within the tumor. The red light allows accurate identification of the cancerous tissue in real time. Based on the information obtained from the detection tool, a high intensety laser is activated, projected from the tip of an optical fiber on the tumor in close range (1 mm) and ablates the tissue. During treatment, the real time detetcion is constantly activated to prevent damage to healthy tissue.

Ziso earned her bachelor’s and master’s degrees at the Technion Faculty of Biomedical Engineering. The topic of her master’s thesis, supervised by Professor Eitan Kimmel, was treating malignant tumors using ultrasound and micro-bubbles. On completion of graduate school, she worked at InSightec and other biomedical companies. Four years ago, she began her doctorate under the supervision of Professor Shoham and Professor Zaaroor.

Two Israeli companies are involved in the development process: Prizmatix, which built the optical detection system, and Civan Advanced Technologies, which built the laser system.

Newsletter



You May Also Like

World News

In the 15th Nov 2015 edition of Israel’s good news, the highlights include:   ·         A new Israeli treatment brings hope to relapsed leukemia...

Life-Style Health

Medint’s medical researchers provide data-driven insights to help patients make decisions; It is affordable- hundreds rather than thousands of dollars

Entertainment

The Movie The Professional is what made Natalie Portman a Lolita.

History & Archeology

A groundbreaking discovery in the Manot Cave in the Western Galilee, Israel has unearthed the earliest evidence in the Levant (and among the world's...