Are men and women different when it come to diseases like autism? A Tel Aviv University study has found that a mutated gene is expressed differently in male and female brains.
For parents of children struggling with autism, the dearth of information is heartbreaking. Medical professionals are hard put to answer the primary questions: Who is autistic? What causes autism? What treatments are available? The situation is similar for Alzheimer’s patients and relatives, who are helpless before the aggressive disease devouring a sufferer’s identity.
Will you offer us a hand? Every gift, regardless of size, fuels our future.
Your critical contribution enables us to maintain our independence from shareholders or wealthy owners, allowing us to keep up reporting without bias. It means we can continue to make Jewish Business News available to everyone.
You can support us for as little as $1 via PayPal at [email protected].
Thank you.
A new study by Tel Aviv University‘s Prof. Illana Gozes, published in Translational Psychiatry, may offer insight into the pathology of both autism and Alzheimer’s by revealing that different activities of certain proteins in males and females cause gender-specific tendencies toward these diseases. While the three-to-one ratio of autism in boys to girls is well known, as is the greater number of female Alzheimer’s patients, the reasons for these phenomena are less clear.
According to Prof. Gozes, “If we understand how ADNP, an activity-related neuroprotective protein which is a major regulatory gene, acts differently in males and females, we can try to optimize drugs for potential future therapeutics to treat both autism and Alzheimer’s disease.”
For the purpose of the new study, Prof. Gozes and her team examined the behavioral response of male and female mice, both ADNP-altered and normal, to different cognitive challenges and social situations. To do so, they removed one copy of the ADNP gene — which regulates over 400 proteins involved in development — from some mice, and then examined their respective responses to unfamiliar objects, odors, and other mice.
Their results revealed sex-specific learning and memory differences in the mice, reflecting hippocampal expression changes in ADNP, resulting in ADNP-controlled autism and in genes which indicate a risk for Alzheimer’s disease. For example, ADNP-deficient male mice exhibited deficiencies in object recognition and social memory, whereas ADNP-altered female mice were more socially deficient compared to the non-altered females.
“ADNP may be new to the world of autism, but I have been studying it for 15 years, ” said Prof. Gozes. “Its gender-dependent expression changes male and female chemical tendencies toward different neurological disorders. Male and female mice may look the same and their brains may look the same, but they are not. When the expression of ADNP is different, it may cause different behaviors and different cognitive abilities.
“This study emphasizes the need to analyze men and women separately in clinical trials to find cures for diseases because they may respond differently, ” she concludes.