Connect with us

Hi, what are you looking for?

Jewish Business News

Science

Researchers: Gravity Saved the Universe after the Big Bang, Maybe

The Universe

New research by a team of European physicists could explain why the universe did not collapse immediately after the Big Bang.

Studies of the Higgs particle – discovered at CERN in 2012 and responsible for giving mass to all particles – have suggested that the production of Higgs particles during the accelerating expansion of the very early universe (inflation) should have led to instability and collapse.

Please help us out :
Will you offer us a hand? Every gift, regardless of size, fuels our future.
Your critical contribution enables us to maintain our independence from shareholders or wealthy owners, allowing us to keep up reporting without bias. It means we can continue to make Jewish Business News available to everyone.
You can support us for as little as $1 via PayPal at [email protected].
Thank you.

Scientists have been trying to find out why this didn’t happen, leading to theories that there must be some new physics that will help explain the origins of the universe that has not yet been discovered. Physicists from Imperial College London, and the Universities of Copenhagen and Helsinki, however, believe there is a simpler explanation.

In a new study in Physical Review Letters, the team describe how the spacetime curvature – in effect, gravity – provided the stability needed for the universe to survive expansion in that early period. The team investigated the interaction between the Higgs particles and gravity, taking into account how it would vary with energy.

They show that even a small interaction would have been enough to stabilise the universe against decay.

“The Standard Model of particle physics, which scientists use to explain elementary particles and their interactions, has so far not provided an answer to why the universe did not collapse following the Big Bang, ” explains Professor Arttu Rajantie, from the Department of Physics at Imperial College London.

“Our research investigates the last unknown parameter in the Standard Model – the interaction between the Higgs particle and gravity. This parameter cannot be measured in particle accelerator experiments, but it has a big effect on the Higgs instability during inflation. Even a relatively small value is enough to explain the survival of the universe without any new physics!”

The team plan to continue their research using cosmological observations to look at this interaction in more detail and explain what effect it would have had on the development of the early universe. In particular, they will use data from current and future European Space Agency missions measuring cosmic microwave background radiation and gravitational waves.

“Our aim is to measure the interaction between gravity and the Higgs field using cosmological data, ” says Professor Rajantie. “If we are able to do that, we will have supplied the last unknown number in the Standard Model of particle physics and be closer to answering fundamental questions about how we are all here.”

Newsletter



Advertisement

You May Also Like

World News

In the 15th Nov 2015 edition of Israel’s good news, the highlights include:   ·         A new Israeli treatment brings hope to relapsed leukemia...

Life-Style Health

Medint’s medical researchers provide data-driven insights to help patients make decisions; It is affordable- hundreds rather than thousands of dollars

Entertainment

The Movie The Professional is what made Natalie Portman a Lolita.

Travel

After two decades without a rating system in Israel, at the end of 2012 an international tender for hotel rating was published.  Invited to place bids...