Connect with us

Hi, what are you looking for?

Jewish Business News

Health New Researches

Why High-Load Training That Strength Your Body Depends on more than muscle

A new study has given new meaning to the concept of brain power by suggesting that physical strength might stem as much from exercising the nervous system as the muscles it controls.

A student lifts weights at the University of Nebraska-Lincoln CREDIT Craig Chandler

 

Over the past few years, researchers have found evidence that lifting more repetitions of lighter weight can build muscle mass just as well as fewer reps of heavier weight. Even so, those who train with heavier weight still see greater gains in strength than those who lift lighter loads.

But if strength differs even when muscle mass does not, what explains the disparity?

Please help us out :
Will you offer us a hand? Every gift, regardless of size, fuels our future.
Your critical contribution enables us to maintain our independence from shareholders or wealthy owners, allowing us to keep up reporting without bias. It means we can continue to make Jewish Business News available to everyone.
You can support us for as little as $1 via PayPal at [email protected].
Thank you.

Nathaniel Jenkins and his colleagues from the University of Nebraska-Lincoln may have uncovered some answers by measuring how the brain and motor neurons – cells that send electrical signals to muscle – adapt to high- vs. low-load weight training.

Their study suggests that high-load training better conditions the nervous system to transmit electrical signals from the brain to muscles, increasing the force those muscles can produce to a greater extent than does low-load training.

Muscles contract when they receive electrical signals that originate in the brain’s neuron-rich motor cortex. Those signals descend from the cortex to the spinal tract, speeding through the spine while jumping to other motor neurons that then excite muscle fibers.

Jenkins found evidence that the nervous system activates more of those motor neurons – or excites them more frequently – when subjected to high-load training. That increased excitation could account for the greater strength gains despite comparable growth in muscle mass.

“If you’re trying to increase strength – whether you’re Joe Shmoe, a weekend warrior, a gym rat or an athlete – training with high loads is going to result in greater strength adaptations,” said Jenkins, an assistant professor of exercise physiology at Oklahoma State University who conducted the research for his dissertation at Nebraska.

The dissertation randomly assigned 26 men to train for six weeks on a leg-extension machine loaded with either 80 or 30 percent of the maximum weight they could lift. Three times per week, the participants lifted until they could not complete another repetition. Jenkins was able to replicate the findings of several previous studies, seeing similar growth in the muscle between the two groups but a larger strength increase – roughly 10 pounds’ worth – in the high-load group.

But the researchers also supplied an electric current to the nerve that stimulates the quadriceps muscles used in leg extensions. Even at full effort, most people do not generate 100 percent of the force their muscles can physiologically produce, Jenkins said. By comparing the force of a participant’s “hardest” unassisted kick with the maximum force they can generate when aided by electric current, scientists can determine how much of that capacity a person has reached – a measure known as voluntary activation.

When adjusting for baseline scores, the researchers found that the voluntary activation of the low-load group increased a 0.15 percent – over a three-week span. The high-load group saw their voluntary activation jump a rise of 2.35 percent.

“During a maximal contraction, it would be advantageous if we are activating – or more fully activating – more motor units,” Jenkins said. “The result of that should be greater voluntary force production – an increase in strength. That’s consistent with what we’re seeing.”

Jenkins also tested his hypothesis another way, asking participants from both groups to kick out at 10-percent intervals of their baseline strength – from 10 percent all the way up to 100 percent – after three and six weeks. If high-load training does improve muscle efficiency better than low-load training, he reasoned, then high-load lifters should also use a smaller proportion of their strength – that is, exhibit lower voluntary activation – when lifting the same relative weight.

“If we see a decrease in voluntary activation at these sub-maximal force levels, that suggests that these guys are more efficient,” Jenkins said. “They are able to produce the same force, but they activate fewer motor units to do it.”

Placing electrodes on the participants to record the electrical signatures of their quadriceps reinforced those results. High-load training led to a substantially larger drop in electrical activity after six weeks, the study reported, and that activity was lower across most levels of exertion.

“From a practical standpoint, that should make the activities of daily living easier,” Jenkins said. “If I’m lifting sub-maximal loads, I should be able to do more repetitions with fewer motor units active, so maybe I fatigue a little bit slower.”

Jenkins maintained that low-load training remains a viable option for those looking to simply build mass or avoid putting extreme stress on joints, a priority for older adults and people rehabbing from injury. Still, he said, the new study lends even greater credence to the notion that when it comes to building strength – especially amid a busy schedule – heavier is better.

“I don’t think anybody would argue (with the idea) that high-load training is more efficient,” Jenkins said. “It’s more time-efficient. We’re seeing greater strength adaptations. And now we’re seeing greater neural adaptations.”

The findings published in the journal Frontiers in Physiology.

Newsletter



Advertisement

You May Also Like

World News

In the 15th Nov 2015 edition of Israel’s good news, the highlights include:   ·         A new Israeli treatment brings hope to relapsed leukemia...

Life-Style Health

Medint’s medical researchers provide data-driven insights to help patients make decisions; It is affordable- hundreds rather than thousands of dollars

Entertainment

The Movie The Professional is what made Natalie Portman a Lolita.

Travel

After two decades without a rating system in Israel, at the end of 2012 an international tender for hotel rating was published.  Invited to place bids...