Connect with us

Hi, what are you looking for?

Jewish Business News

World News

Dark energy measured with record-breaking map of 1.2 million galaxies

NASA

A team of hundreds of physicists and astronomers have announced results from the largest-ever, three-dimensional map of distant galaxies. The team constructed this map to make one of the most precise measurements yet of the dark energy currently driving the accelerated expansion of the Universe.

“We have spent five years collecting measurements of 1.2 million galaxies over one quarter of the sky to map out the structure of the Universe over a volume of 650 cubic billion light years, ” says Jeremy Tinker of New York University, a co-leader of the scientific team carrying out this effort. “This map has allowed us to make the best measurements yet of the effects of dark energy in the expansion of the Universe. We are making our results and map available to the world.”

Please help us out :
Will you offer us a hand? Every gift, regardless of size, fuels our future.
Your critical contribution enables us to maintain our independence from shareholders or wealthy owners, allowing us to keep up reporting without bias. It means we can continue to make Jewish Business News available to everyone.
You can support us for as little as $1 via PayPal at office@jewishbusinessnews.com.
Thank you.

These new measurements were carried out by the Baryon Oscillation Spectroscopic Survey (BOSS) program of the Sloan Digital Sky Survey-III. Shaped by a continuous tug-of-war between dark matter and dark energy, the map revealed by BOSS allows scientists to measure the expansion rate of the Universe and thus determine the amount of matter and dark energy that make up the present-day Universe. A collection of papers describing these results was submitted this week to the Monthly Notices of the Royal Astronomical Society.

 

Dark energy measured with record-breaking map of 1.2 million galaxies

 

BOSS measures the expansion rate of the Universe by determining the size of the baryonic acoustic oscillations (BAO) in the three-dimensional distribution of galaxies. The original BAO size is determined by pressure waves that travelled through the young Universe up to when it was only 400, 000 years old (the Universe is presently 13.8 billion years old), at which point they became frozen in the matter distribution of the Universe. The end result is that galaxies have a slight preference to be separated by a characteristic distance that astronomers call the acoustic scale. The size of the acoustic scale at 13.4 billion years ago has been exquisitely determined from observations of the cosmic microwave background from the light emitted when the pressure waves became frozen. Measuring the distribution of galaxies since that time allows astronomers to measure how dark matter and dark energy have competed to govern the rate of expansion of the Universe.

“We’ve made the largest map for studying the 95% of the universe that is dark, ” noted David Schlegel, an astrophysicist atBerkeley Lab. “In this map, we can see galaxies being gravitationally pulled towards other galaxies by dark matter. And on much larger scales, we see the effect of dark energy ripping the universe apart.”

Shirley Ho, an astrophysicist at Berkeley Lab adds, “We can now measure how much the galaxies and stars cluster together as a function of time to such an accuracy we can test General Relativity at cosmological scales.”

 

Dark energy measured with record-breaking map of 1.2 million galaxies (2)

 

To measure the size of these ancient giant waves to such sharp precision, BOSS had to make an unprecedented and ambitious galaxy map, many times larger than previous surveys. At the time the BOSS program was planned, dark energy had been previously determined to significantly influence the expansion of the Universe starting about 5 billion years ago. BOSS was thus designed to measure the BAO feature from before this point (7 billion years ago) out to near the present day (2 billion years ago).

Jose Vazquez of Brookhaven National Laboratory combined the BOSS results with other surveys and searched for any evidence of unexplained physical phenomena in the results. “Our latest results tie into a clean cosmological picture, giving strength to the standard cosmological model that has emerged over the last eighteen years.”

Rita Tojeiro of the University of St. Andrews “We see a dramatic connection between the sound wave im-prints seen in the cosmic microwave background 400, 000 years after the Big Bang to the clustering of galaxies 7-12 billion years later. The ability to observe a single well-modeled physical effect from recombination until today is a great boon for cosmology.”

The map also reveals the distinctive signature of the coherent movement of galaxies toward regions of the Universe with more matter, due to the attractive force of gravity. Crucially, the observed amount of infall is explained well by the predictions of general relativity.

“The results from BOSS provide a solid foundation for even more precise future BAO measurements, such as those we expect from the Dark Energy Spectroscopic Instrument (DESI), ” says Natalie Roe, Physics Division director at Berkeley Lab. “DESI will construct a more detailed 3-dimensional map in a volume of space ten times larger to precisely characterize dark energy — and ultimately the future of our universe.”

Newsletter



Advertisement

You May Also Like

World News

In the 15th Nov 2015 edition of Israel’s good news, the highlights include:   ·         A new Israeli treatment brings hope to relapsed leukemia...

Entertainment

The Movie The Professional is what made Natalie Portman a Lolita.

Travel

After two decades without a rating system in Israel, at the end of 2012 an international tender for hotel rating was published.  Invited to place bids...

VC, Investments

You may not become a millionaire, but there is a lot to learn from George Soros.